BINDING

Proces łączenia radia i MULTI-Module z odbiornikiem lub modelem nazywa się "wiązaniem". Proces wiązania różni się w zależności od protokołów, ale ogólnie istnieją dwa typy:

--Protokoły automatycznego wiązania to protokoły, które wiążą się za każdym razem, gdy odbiornik i radio są włączone. Te protokoły są zwykle używane w mniejszych modelach "zabawkach".

--Protokoły ręcznego wiązania to protokoły wymagające jednorazowego powiązania, zwykle z wciśniętym przyciskiem lub zainstalowaną zworką na odbiorniku, aby przełączyć go w tryb wiązania. Wiązanie jest następnie zapisywane w radiu i odbiorniku. Te protokoły są zwykle używane w odbiornikach i modelach przeznaczonych dla hobbystów.

Wiązanie przy włączaniu

Domyślnie modele skonfigurowane z protokołami automatycznego wiązania będą próbowały połączyć się podczas włączania radia (zakładając, że ostatnio wybrany model używał protokołu automatycznego wiązania) lub zaraz po wybraniu modelu. Aby radio mogło zainicjować wiązanie przy włączaniu zasilania lub wyborze modelu, opcja Bind on Channel musi być wyłączona w konfiguracji modelu.

	8 3 rd x & 26 Dec 19:50
MODEL SETUP	
External RF	
Mode	MULTI MJXq E010
Module Status	No MULTI_TELEMETRY detected
Channel Range	CH1 - CH16_
Receiver No.	00 🛡 Bind 🔍 Range
RF Freq. fine tune	0
Bind on channel	
Disable Telemetry	
Low power mode	

Aby powiązać radio i model:

Krok 1: Podłącz baterię w modelu

Krok 2: Włącz radio i wybierz model odbiornika

Kolejne wiązania, na przykład po wymianie baterii w modelu, można zainicjować wyłączając i włączając radio lub używając akcji Bind w menu Model Setup.

Bind on Channel

Najłatwiejszym i najbezpieczniejszym sposobem korzystania z protokołu automatycznego wiązania jest użycie funkcji Bind on Channel modułu MULTI-Module.

Gdy opcja Bind on Channel jest włączona, radio nie będzie automatycznie wiązało się przy włączaniu zasilania i wyborze typu odbiornika, wiązanie należy zainicjować ręcznie.

Używając Bind on Channel, MULTI-Module zainicjuje powiązanie, jeśli kanał 16 przejdzie od -100% do + 100%.

Zalecanym sposobem na to jest skonfigurowanie przełącznika logicznego. Ma to na celu zapewnienie, że wiązanie jest inicjowane tylko wtedy, gdy przepustnica jest na -100%

Domyślnym kanałem powiązania jest CH16, ale można go zmienić na dowolny kanał od 5 do 16, kompilując własne oprogramowanie MULTI-Module.

Konfiguracja Bind on Channel

Krok 1: W ustawieniach RF strony Model Setup włącz opcję Bind on channel, zaznaczając pole.

	26 Dec 19:28
MODEL SETUP	
External RF	
Mode	MULTI MJXq E010
Module Status	No MULTI_TELEMETRY detected
Channel Range	CH1 - <u>CH16</u>
Receiver No.	00 单 Bind 🛛 单 Range
RF Freq. fine tune	0
Bind on channel	
Disable Telemetry	
Low power mode	

Krok 2: Skonfiguruj przełącznik logiczny, który wymaga, aby przepustnica była ustawiona na -100%, podczas gdy przełącznik chwilowy (w tym przykładzie SH) jest aktywny, opcjonalnie z krótkim opóźnieniem, tak aby przełącznik chwilowy musiał być przytrzymany, aby nastąpiło powiązanie.

€	ΞH	N)N K∑ X)Xhi &	₹.	0	26 Dec 18:30
LOG	ICAL SWI	TCHES				
L01	a=x	€Thr	-100	SH↓		0.5
L02			0			
L03			0			
L04			0			
L05			0			
L06			0			
L07			0			
L08			0			
L09			0			

Bind on Channel Logical switches with 0.5s Delay opóznienie ustawienie preełącznika logicznego

Krok 3: Przypisz przełącznik logiczny do CH16 w mikserze.

Ð	ΞH			ſŸX		Ouj	8 Jan 07:44
MIXE	S						
CH15							
CH16	100%	L01					
CH17							
CH18							
CH19							
CH20							
CH21							
CH22							
CH23							
CH16		-100%	() (CH1	6	-1	00%

Przełącznik logiczny przypisany do kanału CH16

Możesz teraz powiązać swój model, aktywując chwilowy przełącznik na co najmniej 0,5 s, gdy przepustnica jest na -100%.

Protokoły ręcznego wiązania

Aby powiązać MULTI-Module z odbiornikiem ręcznym wiązaniem, należy postępować zgodnie z instrukcjami producenta odbiornika,

Proces będzie różny w zależności od odbiornika, ale zazwyczaj będzie podobny do następującego:

- 1. Włącz radio
- 2. Przytrzymaj przycisk wiązania odbiornika lub umieść zworkę wiązania w odbiorniku
- 3. Podłącz zasilanie do odbiornika
- 4. Zainicjuj wiązanie w radiu
 - Tryb szeregowy użyj akcji Bind w menu Model Setup w radiu
 - Tryb PPM naciśnij przycisk powiązania na module

Po nawiązaniu połączenia odbiornika z radiem, nawiążą połączenie, gdy tylko zostaną włączone (oraz wybrany model).

Jeśli odbiornik nie łączy się, a częstotliwość RF. opcja dostrajania jest dostępna dla protokołu, zmień częstotliwość RF. dostrój wartość na -40 lub 40 i spróbuj ponownie połączyć. Jeśli powiązanie nadal się nie powiedzie, kontynuuj próbę wyższych i niższych wartości w krokach plus lub minus 40, aż powiązanie się powiedzie.

	27 Dec 💦 🔿 💽 \delta 27 Dec 10:16
MODEL SETUP	
External RF	
Mode	MULTI FrSky D16
Module Status	No MULTI_TELEMETRY detected
Channel Range	CH1 - CH16
Receiver No.	00 单 Bind 🛛 单 Range
RF Freq. fine tune	40 RSSI(75)
Bind on channel	
Disable Telemetry	
Low power mode	

RF Freq. dostrój precyzyjny ustawiony na 40

Zapoznaj się z dokumentacją strojenia częstotliwości, aby uzyskać więcej informacji na temat dostrajania i zakończyć procedurę dostrajania.

W razie potrzeby powiązanie protokołów ręcznego wiązania można również zainicjować za pomocą opcji "Bind on Channel".

Strojenie częstotliwości

Niektóre protokoły wymagają dostrojenia w celu uzyskania optymalnej wydajności. W przypadkach do połączenia protokołu wymagane jest dostrojenie. Dostrajanie częstotliwości jest specyficzne dla każdego MULTI-Modułu i jest spowodowane bardzo małymi zmianami w komponentach RF.

Dostrajanie częstotliwości zazwyczaj wymaga wykonania tylko raz na protokół, ponieważ zazwyczaj występuje tylko niewielka różnica między wartościami znalezionymi dla wielu odbiorników tego samego typu. Kiedy już jest znana, ta sama wartość może być zwykle używana dla wszystkich odbiorników korzystających z protokołu.

Protokoły wymagające dostrojenia częstotliwości to:

---FrSkyD (np. FrSky D4R i D8R, odbiorniki DIY RX-F801 i RX-F802)

---FrSkyV (np. Odbiorniki FrSky V8R4, V8R7 i V8FR)

- ---FrSkyX (np. Odbiorniki FrSky X4R, X6R, X8R, XM + i XSR)
- ---S-FHSS (np. Odbiorniki Futaba S-FHSS)

---Corona (np. Corona V1 FSS, Corona V2 DSSS CR8D / CR6D / CR4D i FlyDream IS-4R / IS-4R0)

- ---Hitec (np. Odbiorniki Optima, Minima, Micro i RED)
- ---HoTT (np. Odbiorniki Graupner)

---Dowolny protokół, który może wykorzystywać moduł CC2500 RF do emulacji XN297. Zostanie to odnotowane na stronie szczegółów protokołu, np. E010, V911S i inne.

Ogólne zasady są takie, że jeśli RF Freq. W menu protokołu pojawi się opcja dostrojenia, wymagane jest dostrojenie częstotliwości i należy je wykonać.

	C C C C C C C C 15 Nov 19:40
MODEL SETUP	
Mode	MULTI FrSky D16
Module Status	V1.3.1.75 AETR
Channel Range	CH1 - CH16
Receiver	01 🔍 Bind 🔍 Range
RF Freq. fine tune	0 RSSI(0)
Bind on channel	
Disable Telemetry	
Low power mode	
Failsafe mode	Nopulses

RF Freq. opcja dostrojenia

Strojenie częstotliwości jest zawsze zalecane, ale szczególnie, gdy:

--Trudno jest połączyć się z odbiornikiem lub połączenie jest słabe lub przerywane

– Zakres regulacji jest bardzo krótki

– Dane telemetryczne nie są odbierane lub (tylko w przypadku odbiorników z obsługą telemetrii)

Zakończenie procedury strojenia częstotliwości zapewnia, że radio i odbiornik będą miały możliwie najsilniejsze połączenie.

Jeśli zmienisz wartość dostrojenia częstotliwości, najlepiej jest ponownie powiązać odbiornik.

Procedura strojenia częstotliwości

Procedura może być wykonywana w trybie szeregowym lub PPM. W trybie seryjnym jest łatwiej, ponieważ efekt można obserwować w czasie rzeczywistym.

Aby uzyskać najlepsze wyniki, procedurę dostrojenia należy przeprowadzić z użyciem oryginalnego odbiornika FrSky, Futaba, Corona, Hitec lub HoTT.

Przygotowanie

Jeśli odbiornik nie łączy się, a częstotliwość RF. opcja dostrajania jest dostępna dla protokołu, zmień częstotliwość RF. dostrój wartość na -40 lub 40 i spróbuj ponownie połączyć. Jeśli powiązanie nadal się nie powiedzie, kontynuuj próbę wyższych i niższych wartości w krokach plus lub minus 40, aż powiązanie się powiedzie.

	X A V O A 15 Nov 19:40
MODEL SETUP	
ModeMULTIModule StatusV1.3.1.75Channel RangeCH1 - CHReceiver01 • BiRF Freq. fine tune0Bind on channel□Disable Telemetry□Low power mode□Failsafe modeNo pulse	FrSky D16 5 AETR 116 ind • Range RSSI(0)

Upewnij się, że wypróbowałeś całą gamę RF Freq. dostrój wartości, od -127 do +127.

Więcej szczegółowych instrukcji dotyczących kończenia procesu wiązania można znaleźć na stronie dokumentacji powiązań.

Po związaniu odbiornika można przystąpić do precyzyjnego strojenia.

Dokładne dostrajanie trybu szeregowego

Jeśli masz skonfigurowaną telemetrię i radio obsługujące głos, możesz włączyć alarm głosowy w przypadku utraty telemetrii, aby otrzymywać natychmiastowe ostrzeżenie w przypadku utraty połączenia z odbiornikiem.

Radio jest powiązane z odbiornikiem:

- 1. Wróć do częstotliwości RF. opcja dostrojenia
- 2. Zmniejsz wartość do momentu, gdy radio straci połączenie z odbiornikiem. Zapisz wartość (TUNE_MIN).
- 3. Podnieś wartość, aby przywrócić połączenie, a następnie zwiększaj ją dalej, aż radio ponownie straci połączenie z odbiornikiem. Zapisz wartość (TUNE_MAX).
- Oblicz medianę między dwiema wartościami (TUNE_MIN + TUNE_MAX) / 2 = TUNE_MEDIAN Ustaw częstotliwość RF. dostroić do wartości mediany Przykład

Połączenie jest tracone przy -73 i +35; mediana to -19:

Gdy znana jest wartość Fine Tuning, można jej użyć we wszystkich modelach, które używają tego samego protokołu.

Jeśli kompilujesz własną kompilację oprogramowania układowego, możesz ustawić wartość Fine Tuning w oprogramowaniu sprzętowym, eliminując potrzebę konfigurowania go w każdym modelu.

Precyzyjne strojenie w trybie PPM

Dokładne strojenie w trybie PPM wymaga skonfigurowania wielu pozycji przełącznika za pomocą tego samego protokołu, ale z różnymi wartościami dostrajania, a następnie skompilowania i przesłania oprogramowania układowego oraz przetestowania każdej wartości. Aby uzyskać dokładną wartość dostrojenia, należy kilkakrotnie powtórzyć proces kompilacji-przesyłania-testu. Musisz być zaznajomiony z konfiguracją i kompilacją kodu źródłowego MULTI-Module. Więcej informacji można znaleźć na stronie Kompilowanie oprogramowania sprzętowego.

Kompilowanie oprogramowania sprzętowego

Kompilowanie oprogramowania MULTI-Module nie jest zbyt trudne, nawet dla nowicjusza, który ma wbudowany kod. Wszystkie opcje konfiguracyjne są zawarte w jednym pliku, który jest udokumentowany komentarzami.

Na wysokim poziomie są cztery kroki:

- Krok 1: Pobierz kod źródłowy MULTI-Module
- Krok 2: Zainstaluj i skonfiguruj narzędzia Arduino IDE
- Krok 3: Edytuj i skompiluj kod
- Krok 4: Prześlij skompilowany kod do MULTI-Module

Pełną dokumentację każdego kroku można znaleźć w repozytorium MULTI-Module GitHub:

https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/blob/master/docs/Compiling_STM32.md

Aktualizacje oprogramowania sprzętowego

Oprogramowanie układowe MULTI-Module nie jest tym samym, co oprogramowanie układowe radia i należy je oddzielnie aktualizować. Aktualizacje oprogramowania MULTI-Module są publikowane regularnie, a aktualizacja oprogramowania MULTI-Module jest dość prosta. Najnowsze oprogramowanie sprzętowe można znaleźć w witrynie MULTI-Module Downloads:

https://downloads.multi-module.org/

Sprawdzanie wersji

Wersję oprogramowania MULTI-Module można sprawdzić, patrząc na wiersz Module Status w menu Model Setup w radiu.

	5 r f 🛛 🗟 🔽 🜍 \delta 4 Jan 16:04
MODEL SETUP	
External RF	
Mode	MULTI FlySky Std
Module Status	V1.3.0.46 AETR
Channel Range	СН1 - СН16
Receiver No.	01 单 Bind 🛛 单 Range
Bind on channel	
Disable Telemetry	
Disable Ch. map	
Low power mode	

Po aktualizacji oprogramowania radiowego OpenTX, radio może poinformować, że jest dostępne nowsze oprogramowanie MULTI-Module poprzez flashowanie zalecanej aktualizacji modułu na przemian z numerem wersji w Statusie modułu.

Utrzymywanie aktualności oprogramowania MULTI-Module jest zdecydowanie zalecane, ponieważ aktualizacje często dodają nowe funkcje i rozwiązują problemy.

Proces aktualizacji

Aby zaktualizować MULTI-Module, należy pobrać odpowiedni plik oprogramowania układowego i skorzystać z jednej z trzech dostępnych metod, aby zapisać plik do modułu.

Krok 1: Pobierz odpowiedni plik oprogramowania układowego dla swojego MULTI-Module W każdym wydaniu znajduje się wiele różnych plików oprogramowania układowego, z których każdy jest zbudowany dla nieco innych konfiguracji radia lub modułów.

Zobacz stronę Pliki oprogramowania układowego, jeśli potrzebujesz pomocy w ustaleniu, który plik pobrać.

https://www.multi-module.org/using-the-module/firmware-updates/firmware-files

Krok 2: Wybierz metodę aktualizacji, aby flashować (zapisywać) plik oprogramowania układowego do MULTI-Module Istnieją trzy sposoby aktualizacji oprogramowania wbudowanego MULTI-Module. Zobacz dedykowaną stronę Metody aktualizacji, aby wybrać odpowiednią dla siebie.

https://www.multi-module.org/using-the-module/firmware-updates/update-methods

Kolejność kanałów

Wiele protokołów, zwłaszcza automatycznie wiążące protokoły Bind-n-Fly (BNF) dla małych zabawek, wymaga wejść na określonych kanałach.

Dla wygody i dla obsługi starszych odbiorników, które nie mogą zmieniać kolejności kanałów wyjściowych, MULTI-Module automatycznie ponownie mapuje kanały 1-4 w kolejności wymaganej przez protokół, pod warunkiem, że kolejność kanałów skonfigurowana w mikserze lub wyjściach radia odpowiada oczekiwaniom kolejność kanałów dla MULTI-Module.

Pozwala to skonfigurować wszystkie modele przy użyciu preferowanej kolejności kanałów, bez martwienia się o rzeczywistą kolejność kanałów wymaganą przez model lub protokół.

Kolejność kanałów wymagana dla każdego protokołu i protokołu podrzędnego jest pokazana na stronie szczegółów każdego protokołu.

Kolejność kanałów jest szczególnie ważna w przypadku odbiorników DSM, które wymagają kanałów w kolejności TAER.

Jeśli używasz DSM, czytaj dalej, aby dowiedzieć się, jak poprawnie skonfigurować model.

Oczekiwana kolejność kanałów

Aby ponowne mapowanie kanałów działało, MULTI-Module musi odbierać dane kanału w znanej kolejności. To jest oczekiwana kolejność kanałów.

Oczekiwana kolejność kanałów jest ustawiana w oprogramowaniu MULTI-Module podczas jego kompilacji.

Domyślna oczekiwana kolejność kanałów dla wielu modułów to AETR.

Status modułu pokazujący kolejność kanałów

Należy zaktualizować oprogramowanie układowe MULTI-Module, jeśli oczekiwana kolejność kanałów nie jest wyświetlana w wierszu Module Status stanu modułu. Aktualizacja oprogramowania sprzętowego zapewni, że znasz oczekiwaną kolejność kanałów.

Podczas konfigurowania modelu kolejność kanałów w mikserze powinna być taka sama, jak oczekiwana kolejność kanałów

Ð	ΞH			rť x (₹.) 💽 👩	4 Jan 09:27
MIXE	S						
CH1	100%	ƘAil					
CH2	100%	Ƙ€Ele					
CH3	100%	€CThr					
CH4	100%	Ƙ€Rud					
CH5							
CH6							
CH7							
CH8							
CH9							
CH1			■ ⊗) ► (CH1			

Mikser z wejściami przypisanymi w kolejności AETR

MULTI-Module przesyła dane do przykładowego modelu skonfigurowanego powyżej, skonfigurowanego dla AETR przy użyciu protokołu DSM, moduł przed transmisją ponownie mapuje kanały do kolejności TAER.

Przykłady ponownego mapowania kanałów

Przykład 1

-----MULTI-Module używa domyślnej oczekiwanej kolejności kanałów AETR

-----Protokół to DSM, który wymaga danych kanału w kolejności TAER w odbiorniku -----Model jest skonfigurowany w radiu z kanałami w kolejności AETR w mikserze / wyjściach -----Serwa i silniki są wpinane do oznaczonych wyjść na odbiorniku w kolejności TAER -----W tym przypadku MULTI-Module ponownie mapuje kanały przed transmisją, odbiornik odbiera TAER i wszystko działa zgodnie z oczekiwaniami:

Radio CH	Radio Mixer	Module Re-mapping	Receiver Receives
1	Aileron Lotka	1 -> 2	Throttle gaz
2	Elevator SW	2 -> 3	Aileron lotki
3	Throttle Gaz	3 -> 1	Elevator ster wysokości
4	Rud SK	4 -> 4	Rudder ster kierunku

Przykład 2.

-----MULTI-Module został zaktualizowany, aby używać oczekiwanego zamówienia kanałów TAER -----Protokół to DSM, który wymaga danych kanału w kolejności TAER w odbiorniku -----Model jest skonfigurowany w radiu z kanałami w kolejności TAER w mikserze / wyjściach -----Serwa i silniki są wpinane do oznaczonych wyjść na odbiorniku w kolejności TAER

W takim przypadku MULTI-Module nie musi przeprowadzać ponownego mapowania kanałów i wszystko działa zgodnie z oczekiwaniami:

Radio CH	Radio Mixer	Module Re-mapping	Receiver Receives
1	Throttle	1 -> 1	Throttle
2	Aileron	2 -> 2	Aileron
3	Elevator	3 -> 3	Elevator
4	Rudder	4 -> 4	Rudder

Przykład 3

-----MULTI-Module używa domyślnej oczekiwanej kolejności kanałów AETR.

-----Protokół to DSM, który wymaga danych kanału w kolejności TAER w odbiorniku

-----Model jest skonfigurowany w radiu z kanałami w kolejności TAER w mikserze / wyjściach -----Serwa i silniki są wpinane do oznaczonych wyjść na odbiorniku w kolejności TAER

W tym przypadku MULTI-Module ponownie mapuje kanały, ale ponieważ kolejność wejściowa nie jest zgodna z oczekiwaniami, kolejność wyjść jest nieprawidłowa i model nie działa

Radio CH	Radio Mixer	Module Re-mapping	Receiver Receives
1	Throttle	1 -> 2	Elevator
2	Aileron	2 -> 3	Throttle
3	Elevator	3 -> 1	Aileron
4	Rudder	4 -> 4	Rudder

Niedopasowanie kolejności kanałów radiowych i oczekiwanej kolejności kanałów MULTI-Module może mieć potencjalnie katastrofalne lub niebezpieczne konsekwencje!

Scenariusz z przykładu 3 można uniknąć poprzez:

---Zmiana kolejności kanałów w modelu w mikserze / wyjściach w celu dopasowania do oczekiwanej kolejności kanałów MULTI-Module.

---Zmiana oprogramowania MULTI-Module, aby oczekiwać TAER zamiast AETR

---Wyłączanie ponownego mapowania kanałów w konfiguracji modelu

Zmiana kolejności kanałów

Jeśli wolisz skonfigurować swoje modele z inną kolejnością kanałów, możesz zmienić oczekiwaną kolejność kanałów przez flashowanie innego oprogramowania układowego do MULTI-Module. Możesz skompilować własne oprogramowanie układowe lub pobrać obraz oprogramowania układowego z inną oczekiwaną kolejnością kanałów

https://github.com/pascallanger/DIY-Multiprotocol-TX-Module/releases

Pobieranie oprogramowania układowego MULTI-Module jest dostępne dla zamówień kanałów AETR, TAER i RETA, patrz

https://www.multi-module.org/using-the-module/firmware-updates/firmware-files#channel-order

Zmiana domyślnej kolejności kanałów w radiu

Po ustaleniu preferowanej kolejności kanałów i sflashowaniu MULTI-Module oprogramowaniem sprzętowym, które oczekuje takiej kolejności, należy:

----Zmień ustawienie domyślnej kolejności kanałów w radiotelefonie, aby odpowiadało oczekiwanej kolejności MULTI-Module

----Upewnij się, że wszystkie modele, które sterujesz za pomocą MULTI-Module, mają skonfigurowaną kolejność kanałów, której oczekuje MULTI-Module

🙆 🔅 🕄 🎾 🎦 関	i 30 Dec 19:11
RADIO SETUP	
Adjust RTC	
Coordinate format	DMS
Country code	Europe
Voice language	English
Units	Metric
Play delay (sw. mid pos)	150ms
USB Mode	Storage
Default channel order	AETR
Mode	2 @Rud @Thr @Ele @Ail
Default channel order Mode	AETR 2

Domyślna kolejność kanałów radiowych ustawiona na AETR

Zmiana domyślnej kolejności kanałów w radiu ma wpływ tylko na nowe modele - musisz ręcznie edytować istniejące modele.

Ustawienie trybu odzwierciedla konfigurację sprzętową drążków radia. Nie zmieniaj trybu, chyba że fizycznie zmienisz drążki, np. przełączenie przepustnicy z lewego drążka na prawy.

Wyłączanie ponownego mapowania kanałów

Począwszy od oprogramowania MULTI-Module w wersji 1.3.0.45 i OpenTX 2.3.3, ponowne mapowanie kanałów można wyłączyć dla modelu, zaznaczając opcję Disable Ch. pole mapy w konfiguracji modelu.

Możesz wyłączyć ponowne mapowanie kanałów Jeśli wolisz samodzielnie skonfigurować kolejność kanałów lub jeśli ponowne mapowanie kanałów powoduje problemy z powodu niezgodności między kolejnością w modelu a oczekiwaną kolejnością kanałów MULTI-Module.

Channel Mapping Disabled

Gdy ponowne mapowanie kanałów jest wyłączone, dane kanału będą przesyłane do odbiornika w dokładnie takiej kolejności, w jakiej zostały skonfigurowane w mikserze lub wyjściach radia.

Nazewnictwo kanałów

Skrypt MULTI Channel Namer LUA może służyć do automatycznego nadawania nazw kanałom dowolnego modelu, który jest skonfigurowany z protokołem MULTI-Module.

Skrypt używa skonfigurowanego protokołu, bazy danych zawierającej przypisania kanałów dla każdego protokołu oraz skonfigurowanej przez moduł oczekiwanej kolejności kanałów, aby nazwać wszystkie kanały zgodnie z ich określonym użyciem.

Skrypt bardzo ułatwia przypisanie odpowiednich wejść do każdego kanału, dopasowując dane wejściowe do nazwanych wyjść.

Skrypt MULTI Channel Namer jest zawarty w OpenTX 2.3.8. Do korzystania ze skryptu wymagany jest OpenTX 2.3.8 lub nowszy

Korzystanie ze skryptu

- 1. Wybierz lub skonfiguruj model, który używa protokołu MULTI-Module
- 2. Upewnij się, że w modelu wybrano prawidłowe protokoły MULTI-Module

	4 Jul 💽 🕞 💰 🛔 4 Jul 18:56
MODEL SETUP	
Internal RF	
Mode	MULTI MJXq E010
Module Status	No MULTI_TELEMETRY detected
Channel Range	CH1 <u>- CH16</u>
Receiver	00 单 Bind 🛛 单 Range
RF Freq. fine tune	0 RSSI(0)
Bind on channel	
Disable Telemetry	
Low power mode	

Model skonfigurowany przy użyciu protokołu MJXq / E010

- 3. Naciśnij przycisk SYS
- 4. Z menu Narzędzia uruchom skrypt nazw wielu kanałów

5. Sprawdź, czy dane wyjściowe wyglądają rozsądnie

Nazwy kanałów E010

6. Naciśnij klawisz Enter, aby zapisać nazwy kanałów Na ekranie Wyjścia kanały zostaną teraz nazwane zgodnie z ich przeznaczeniem:

€		» ⊳{	ء 🕅		† X (4 Jul 18:58	
OUT	PUTS							
CH1	Ail	0.0	-100.0		100.0	→	 1500 🛆	
CH2	Ele	0.0	-100.0		100.0	→	 1500 🛆	
CH3	Thr	0.0	-100.0	←	100.0	→	 1500 🛆	
CH4	Rud	0.0	-100.0		100.0	→	 1500 🛆	
CH5	Flip	0.0	-100.0		100.0	→	 1500 🛆	
CH6	LED	0.0	-100.0		100.0	→	 1500 🛆	
CH7	Pict	0.0	-100.0		100.0	→	 1500 🛆	
CH8	Video	0.0	-100.0		100.0	→	 1500 🛆	
CH9	HLess	0.0	-100.0		100.0	→	 1500 🛆	

E010 Named Channels

Aktualizacje skryptów

Najnowszą wersję skryptu Multi Channel Namer można pobrać pod adresem <u>https://downloads.multi-module.org</u>.

Pobierz plik MultiLuaScripts.zip z najnowszej wersji Rozpakuj plik Podłącz radio lub kartę SD do komputera

Skopiuj MultiChannelsUpdate.lua i MultiChan.txt do folderu TOOLS \ SCRIPTS na karcie SD radia (zastąp istniejące pliki tymi samymi nazwami)

Klonowanie radia

MULTI-Module może być używany do klonowania (kopiowania) unikalnego identyfikatora radia transmitującego jeden z obsługiwanych protokołów FrSky.

Klonowanie radia pozwala MULTI-Module komunikować się z dowolnym odbiornikiem, który był powiązany z oryginalnym radiem, bez konieczności ponownego łączenia odbiorników.

Dostępne są trzy `` gniazda " pamięci do klonowania:

- 1 gniazdo do klonowania D8
- 1 gniazdo do klonowania FrSkyX (D16v1)
- 1 gniazdo do klonowania FrSkyX2 (D16v2.1.0)

W każdym gnieździe można sklonować ten sam nadajnik lub różne nadajniki, ale w każdym gnieździe przechowywany jest tylko jeden identyfikator nadajnika.

Jeśli zastosujesz procedurę klonowania z radiem transmitującym protokół D8, zostanie on zapisany w slocie D8. Podobnie dla D16v1 i D16v2.1

Po sklonowaniu identyfikatora nadajnika można użyć sklonowanego identyfikatora dla dowolnego modelu, korzystając z opcji podprotokołu FrSkyD / X / X2 "Cloned". W ten sposób możesz mieć modele pracujące z oryginalnym identyfikatorem MULTI-Module i modele, które są współdzielone zarówno przez sklonowany TX, jak i MPM.

Do używania sklonowanych identyfikatorów nadajników z modułem MULTI-Module wymagany jest OpenTX 2.3.8 lub nowszy.

Procedura klonowania

- 1.W radiu, aby otrzymać sklonowany identyfikator, skonfiguruj nowy model z protokołem FrSky RX, podprotokołem CloneTX
- 2.W radiu, które ma zostać sklonowane, wybierz (lub skonfiguruj) model, który używa protokołu, z którego chcesz sklonować identyfikator (FrSkyD / D8, FrSkyX / D16 itp.)
- 3.Ustaw oba radia w trybie Bind
- 4. Poczekaj na zakończenie wiązania

Korzystanie ze sklonowanego identyfikatora ID

- 1. Wybierz lub utwórz model, w którym chcesz użyć sklonowanego identyfikatora
- 2. Wybierz protokół, który został sklonowany (FrSkyD / D8, FrSkyX / D16 itp.)
- 3. Wybierz protokół podrzędny Cloned

Uwagi:

FrSkyD / D8 - używany jest numer odbiornika, który został użyty podczas procedury klonowania.

Zmiana numeru odbiornika nie ma żadnego efektu FrSkyX / D16 - numer odbiornika musi być ustawiony tak, aby odpowiadał wartości na oryginalnym nadajniku.

https://www.youtube.com/watch?v=30iDKPuzx-o&feature=emb_logo

Dopasowanie odbiornika

Funkcja Receiver Match umożliwia powiązanie z radiem wielu modeli odbiorników używających tego samego protokołu przy użyciu modeli nadajników i zapobiega przypadkowemu uruchomieniu niewłaściwego modelu. Na przykład, jeśli masz kilka samolotów, które mają ten sam typ odbiornika, a każdy samolot ma inny model skonfigurowany w radiu, możesz zapewnić, że dany samolot będzie sterowany tylko przez pasujący model radia, konfigurując dopasowanie odbiornika.

Włączanie i dopasowania odbiornika

Dopasowanie odbiornika jest konfigurowane poprzez określenie unikalnego numeru odbiornika (RX Num) dla każdego modelu na stronie konfiguracja modelu Model Setup, przed powiązaniem odbiornika. Jeśli numer odbiornika zostanie zmieniony, odbiornik będzie musiał zostać ponownie powiązany z radiem.

W przypadku korzystania z funkcji dopasowania odbiornika obsługiwanych jest do 64 różnych numerów odbiorników (od 0 do 63).

OpenTX automatycznie przypisze nieużywany numer odbiornika do nowego modelu, gdy zostanie utworzony.

Wyłączanie dopasowania odbiornika

Dopasowanie odbiornika można wyłączyć, przypisując ten sam numer odbiornika do wszystkich modeli.

Aby uniknąć ostrzeżeń w OpenTX Companion, użyj numeru odbiornika 0 dla modeli, w których dopasowanie odbiornika nie jest wymagane.

Analizator widma Spektrum Analizer

Nadajnik z OpenTX 2.3.0 lub nowszym może wykorzystywać wewnętrzny lub zewnętrzny MULTI-Module jako analizator widma 2,4 GHz.

Analizator widma pokaże siłę sygnałów w paśmie 2,4GHz.

2.4GHz Spectrum Analyzer

Korzystanie z analizatora widma

1.Naciśnij i przytrzymaj przycisk SYS, aby uzyskać dostęp do menu TOOLS 2.Przewiń w dół i zaznacz odpowiednią opcję Spectrum w menu

Wybierz Spectrum (INT) dla nadajników z wewnętrznym MULTI-Module Wybierz Spectrum (EXT) dla nadajników z zewnętrznym MULTI-Module

3. Naciśnij ENT, aby uruchomić analizator widma.

Spectrum Analyzer in the TOOLS Menu

Spectrum (EXT) pojawia się w menu tylko wtedy, gdy wybrany jest model korzystający z zewnętrznego MULTI-Module.

Błąd w OpenTX 2.3.9 i wcześniejszych wersjach uniemożliwiał uruchomienie analizatora widma, gdy ostatnio dodany protokół MULTI-Module (np. FrSkyX2) jest skonfigurowany w aktualnie wybranym modelu.

Aby obejść ten problem, przed uruchomieniem analizatora widma wybierz model, który używa starszego protokołu (np. DSM, FrSky lub Flysky).

Wyświetlacz analizatora widma

Wyświetlacz pokazuje częstotliwości w paśmie 2,4 GHz, od 2400 MHz do 2480 MHz. Oś X (pozioma) przedstawia częstotliwość w MHz, a oś Y (pionowa) przedstawia względną siłę sygnału.

F: Częstotliwość w środku działki (ustalona na 2440 MHz)

S: przepustowość działki (ustalona na 80 MHz)

T: Pozycja kursora (linia pionowa)

Naciśnięcie ENT i przewijanie w lewo i w prawo umożliwia zmianę wartości T, co spowoduje przesunięcie pionowej linii, aby podświetlić określoną częstotliwość.

W przyszłej wersji oprogramowania układowego wartości F i S będą regulowane, umożliwiając skupienie się analizatora na określonej części widma.

Bezprzewodowy trener Wireless Trainer

Wireless Trainer umożliwia korzystanie z radia z dwoma modułami - co najmniej jednego MULTI-Module - jako trenera, bez konieczności przewodowego połączenia z radiem ucznia. W radiu Trenera, MULTI-moduł jest skonfigurowany z protokołem odbiornika, a drugi moduł (który może być również MULTI-modułem) jest powiązany z modelem, a nadajnik ucznia jest powiązany z MULTI-modułem Trenera.

Lista protokołów obsługiwanych przez Wireless Trainer znajduje się w sekcji Protokoły odbiornika na stronie Obsługiwane protokoły.

Wireless Trainer nie może być używany w obecnych nadajnikach FrSky ze względu na ograniczenia sprzętowe - nie pozwalają one na telemetrię na module zewnętrznym, gdy moduł wewnętrzny jest używany.

Konfiguracja radia trenera Trainer Radio Setup

Konfiguracja pełna konfiguracji ucznia / trenera wykracza poza zakres tej dokumentacji. Przed przystąpieniem do konfigurowania trenażera bezprzewodowego należy zapoznać się z ogólną konfiguracją trenażera.

Krok 1: W konfiguracji modelu ustaw Trainer Mode na Master / Multi

	21:43
MODEL SETUP	
Module Status Channel Range Receiver No. RF Freq. fine tune Bind on channel Disable Telemetry Low power mode Trainer	No MULTI_TELEMETRY detected CH1 - CH16 01 <u>Bind</u> <u>Range</u> 0
Mode	Master/Multi

Krok 2: Skonfiguruj swój MULTI-Module z jednym z protokołów odbiornika

Telemetria musi być włączona w radiu trenera. Bezprzewodowy trener nie będzie działać, jeśli zaznaczono opcję Wyłącz telemetrię.

Konfiguracja radia ucznia

Krok 1: Skonfiguruj swoje radio tak, aby korzystało z wersji TX protokołu odbiornika, który został skonfigurowany w radiu trenera.

FrSky TX Protocol Selected

Tryb PPM

Obsługa trybu PPM umożliwia pracę MULTI-Module w szerokiej gamie nadajników.

Ze względu na bardziej złożoną naturę konfiguracji i korzystania z trybu PPM, należy go używać tylko wtedy, gdy radio nie obsługuje trybu szeregowego.

W trybie PPM protokół jest wybierany za pomocą 16-pozycyjnego przełącznika obrotowego na MULTI-module. MULTI-Module obsługuje do pięciu różnych "banków" protokołów, ale domyślnie skonfigurowany jest tylko jeden bank.

Aby w pełni wykorzystać zalety MULTI-Module w radiu w trybie PPM, oprogramowanie sprzętowe powinno być skompilowane ze źródła, z bankami protokołów skonfigurowanymi tak, aby zawierały żądane opcje protokołu.

Moduł JP4IN1 z przełącznikiem obrotowym i przyciskiem wiązania

Do korzystania z trybu PPM wymagany jest MULTI-moduł z 16-pozycyjnym przełącznikiem obrotowym i przyciskiem łączenia.

Tabela domyślnych protokołów

Pozycja 0 przełącznika jest zarezerwowana do włączania trybu szeregowego, a pozycja 15 jest zarezerwowana do przełączania do banków protokołów alternatywnych, pozostawiając czternaście pozycji (1-14) dostępnych dla protokołów.

Wykorzystując wszystkie pięć banków, można skonfigurować do 70 różnych kombinacji protokołów.

Poniżej przedstawiono domyślne przypisania protokołów dla standardowego oprogramowania MULTI-Module.

Producenci MULTI-Module często wysyłają moduły z innym zestawem protokołów PPM. Jeśli używasz oprogramowania producenta, zapoznaj się z dokumentacją dostarczoną z modułem.

Pozyc 1	c ja Protokół FlySky	Protokół podrzędny FlySky	Numer RX 0	Autobind No	Wartość opcji 0
2	FlySky AFHDS 2A	A PWM IBUS	0	No	0
3	FlySky AFHDS 2A	A PWM IBUS	1	No	0
4	FlySky AFHDS 2A	A PWM IBUS	2	No	0
5	FlySky AFHDS 2A	A PWM IBUS	3	No	0
6	FlySky AFHDS 2A	A PWM IBUS	2	No	0
7	FlySky AFHDS 2A	A PWM IBUS	3	No	0
8	SFHSS	H107	0	No	0
9	FrSky V		0	No	40
10	FrSky D		0	No	40
11	FrSky X	D16	0	No	40
12	FrSky X	D16 EU (LBT)	0	No	40
13	Devo		0	No	0
14	WK2x01	WK2801	0	No	0

Dostosowywanie protokołów

Aby zmodyfikować protokoły lub zwiększyć liczbę banków, oprogramowanie MULTI-Module musi zostać skompilowane ze źródła.

Więcej informacji na temat kompilacji oprogramowania sprzętowego można znaleźć na stronie Compiling the Firmware.

https://www.multi-module.org/advanced-topics/compiling-the-firmware

Wybór banku protokołu

Niektórzy producenci dostarczają MULTI-moduły ze zmodyfikowanym oprogramowaniem układowym, z alternatywną metodą wyboru banków protokołów.

Opisana tutaj metoda nie będzie miała do nich zastosowania, dopóki nie zostaną zaktualizowane do najnowszego oficjalnego oprogramowania MULTI-Module.

Aby wybrać bank protokołów (gdy włączonych jest wiele banków):

Krok 1: Wyłącz radio. Krok 2: Przełącznik obrotowy ustawić w pozycji 15. Krok 3: Włącz radio - MULTI-Module wskazuje aktualny bank migając diodą LED od jednego do pięciu razy. Krok 4: Naciśnij przycisk powiązania - czerwona dioda LED zaświeci się na jedną sekundę, wskazując, że bank został zmieniony. Krok 5: Powtarzaj krok 4, aż dotrzesz do wybranego banku. Krok 6: Wyłącz radio. Krok 7: Ustaw przełącznik obrotowy w żądanej pozycji (1-14). Krok 8: Włącz radio.

Aktualizacje oprogramowania sprzętowego

Oprogramowanie układowe MULTI-Module nie jest tym samym, co oprogramowanie układowe radia i należy je oddzielnie aktualizować.

Aktualizacje oprogramowania MULTI-Module są publikowane regularnie, a aktualizacja oprogramowania MULTI-Module jest dość prosta.

Najnowsze oprogramowanie sprzętowe można znaleźć w witrynie MULTI-Module Downloads: <u>https://downloads.multi-module.org/</u>

Sprawdzanie wersji

Wersję oprogramowania MULTI-Module można sprawdzić, patrząc na wiersz Module Status w menu Model Setup w radiu.

MODEL SETUP External RF Mode MULTI FlySky Std	
External RF Mode MULTI FlySky Std	
Mode MULTI FlySky Std	
Module Status V1.3.0.46 AETR	
Channel Range CH1 - CH16	
Receiver No. 01 🔍 Bind 🔍 Range	
Bind on channel 🛛 🗌 🗌	
Disable Telemetry 🛛	
Disable Ch. map 🗖	
Low power mode 🛛 🗖	

Po aktualizacji oprogramowania radiowego OpenTX, radio może poinformować, że dostępne jest nowsze oprogramowanie MULTI-Module poprzez flashowanie zalecanej aktualizacji modułu na przemian z numerem wersji w Statusie modułu. Utrzymywanie aktualności oprogramowania MULTI-Module jest zdecydowanie zalecane, ponieważ aktualizacje często dodają nowe funkcje i rozwiązują problemy

Proces aktualizacji

Aktualizacja oprogramowania MULTI-Module nie wpłynie na powiązania odbiorników - wszelkie odbiorniki, które są powiązane z MULTI-Module, pozostaną związane po aktualizacji.

Krok 1: Pobierz odpowiedni plik oprogramowania układowego dla swojego MULTI-Module

W każdym wydaniu znajduje się wiele różnych plików oprogramowania układowego, z których każdy jest zbudowany dla nieco innych konfiguracji radia lub modułów.

Zobacz stronę Pliki oprogramowania układowego, jeśli potrzebujesz pomocy w ustaleniu, który plik pobrać.

https://www.multi-module.org/using-the-module/firmware-updates/firmware-files

Krok 2: Wybierz metodę aktualizacji, aby flashować (zapisywać) plik oprogramowania układowego do MULTI-Module

Istnieją trzy sposoby aktualizacji oprogramowania wbudowanego MULTI-Module.

Zobacz dedykowaną stronę Metody aktualizacji, aby wybrać odpowiednią dla siebie.

https://www.multi-module.org/using-the-module/firmware-updates/update-methods

Rozwiązywanie problemów

MULTI-modulowe diody LED

Diody LED są obecne w większości zewnętrznych MULTI-Modułów i mogą służyć do sprawdzania stanu modułu.

Podstawowe funkcje diod LED to: Zielona dioda LED - wskazuje, że MULTI-Module jest zasilany

Czerwona dioda LED - wskazuje stan MULTI-Modułu

W modułach TMX5 wzory czerwonych diod LED są odwrócone. (Należy również pamiętać, że moduły TMX5 nie są oficjalnie obsługiwane).

Stan czerwony LED	Wzór	Znaczenie
Poza	Poza	Moduł nie działa.
Błyskowy	0,05 s; Wył. 1 s V	Vybrany protokół nie jest dostępny w module.
Odwrócone miganie	WŁ1s; WYL 0,1 s	Czekam na zainicjowanie powiązania.
Szybkie mrugnięcie	WŁ 0,1 s; WYŁ 0,1	s Trwa wiązanie.
Powolne mruganie	WŁ 0,5 s; WYŁ 0,5	5 s Moduł jest w trybie szeregowym, ale nie sygnału z radia
Bardzo wolne mrugnięcie	WŁ 1s; Wył. 1 s	Moduł jest w trybie PPM, ale nie ma sygnału z radia
Szybkie podwójne Mrugnięcie	WŁ 0,1 s; Wył 0,1 s WŁ 0,1 s; Wył 0,1 s	s; Szeregowe debugowanie oczekuje na s; połączenie szeregowe.
WŁ	WŁ	Moduł działa (przesyła).
SOS	Trzy krótkie; trzy długie; że	Oprogramowanie układowe wykryło, e działa na MCU z mniej niż 128KB pamięci flash

Stan modułu

OpenTX wyświetli stan MULTI-Module w linii Module Status sekcji modułu RF na stronie Model Setup.

Normalna operacja

Podczas normalnej pracy Status modułu wyświetla wersję oprogramowania MULTI-Module i oczekiwaną kolejność kanałów.

Stan modułu z wersją oprogramowania sprzętowego i kolejnością kanałów

Jeśli wybrany jest protokół automatycznego wiązania, a wiązanie nie zostało jeszcze zainicjowane, stan modułu wyświetli "Bind to load protocol"

Status modułu oczekuje na powiązanie

Gdy moduł jest powiązany, Status modułu wyświetli wersję oprogramowania sprzętowego, a następnie "Powiązanie".

Brak telemetrii MULTI

Jeśli stan modułu wyświetla "Brak MULTI_TELEMETRY" lub "Brak telemetrii", oznacza to problem z MULTI-modułem

	21:56
MODEL SETUP	
External RF	
Mode	MULTI FrSky D16
Module Status	No MULTI_TELEMETRY detected
Channel Range	CH1 - <u>CH16</u>
Receiver No.	01 单 Bind 🔄 Range
RF Freq. fine tune	0
Bind on channel	
Disable Telemetry	
Low power mode	

Status modułu No MULTI Telemetria

W takiej sytuacji może być jedna z następujących przyczyn:

Wybrany moduł nie jest zainstalowany - opcja Zewnętrzna jest wybierana, gdy powinna być wewnętrzna, lub odwrotnie

Na module zainstalowano niewłaściwe oprogramowanie - niewłaściwe oprogramowanie radiowe lub ustawienie inwersji telemetrii

Moduł jest uszkodzony

Dość częstą wadą są złe połączenia lutowane na 5-pinowym złączu wnęki modułowej

Gdzie otrzymać pomoc

Istnieją dwa sposoby uzyskania pomocy:

Forum grup RC - w przypadku ogólnych pytań typu "jak to zrobić" lub porad od innych użytkowników. GitHub Issues - do zgłaszania błędów lub poważnych problemów.

Grupy RC są zwykle najlepszym miejscem do rozpoczęcia, ponieważ forum jest bardzo aktywne i

ma wielu doświadczonych użytkowników, którzy mogą służyć pomocą i odpowiadać na pytania.

Aby ułatwić udzielanie pomocy, dołącz następujące informacje:

Typ MULTI-Module i wersja oprogramowania Typ radia, oprogramowanie układowe i wersja oprogramowania układowego Używając PPM lub Serial Opis działania diody LED MULTI-Module i odbiornika / modelu Wyjaśnienie kroków zachowania i reprodukcji

https://www.multi-module.org/using-the-module/firmware-updates/update-methods

Sterowniki USB

Podłączenie MULTI-Module do komputera z systemem Windows wymaga zainstalowania sterowników. Mogą być potrzebne dwa różne pakiety sterowników.

Zainstaluj oba sterowniki, jeśli nie masz pewności, którego potrzebujesz.

MULTI-Module (a.k.a. 'Maple') USB

MULTI-Module (znany również jako "Maple" lub "natywny") sterowniki USB są potrzebne dla MULTI-Modules, które mają port USB, który łączy się bezpośrednio z mikroprocesorem STM32 w MULTI-Module. Moduły korzystające z tego sterownika obejmują: Oryginalne moduły 4-w-1 STM32 firmy Banggood iRangeX IRX4 Plus Jumper JP4IN1 (starsza wersja) Vantac MPM Lite Najłatwiejszym sposobem zainstalowania sterowników MULTI-Module USB jest pobranie programu Flash Multi, który zawiera instalator sterowników. https://github.com/benlye/flash-multi/releases/latest

Silicon Labs CP210x

Niektóre MULTI-moduły mają wbudowany adapter USB-na-szeregowy. Te moduły wymagają zainstalowania sterownika Silicon Labs CP210x. Moduły korzystające z tego sterownika obejmują: Jumper JP4IN1 (nowsza wersja) Jumper JP4IN1-SE (dostarczana z T16) Hobby Porter JP4IN1

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Program rozruchowy Botoolader

Bootloader MULTI-Module umożliwia aktualizację oprogramowania sprzętowego przez port USB oraz z kompatybilnego radia z systemem OpenTX lub erSkyTX. Niektóre MULTI-moduły są dostarczane z uszkodzonym lub nieaktualnym programem ładującym. Jeśli bootloader nie działa poprawnie lub nie jest we właściwej wersji, będziesz musiał go zaktualizować.

Błąd braku synchronizacji podczas próby aktualizacji MULTI-Module z OpenTX oznacza, że moduł, który próbujesz flashować, nie ma zainstalowanego programu ładującego MULTI-Module.

Aktualizacja bootloadera

Bootloader MULTI-Module można zaktualizować na trzy sposoby:

- 1. Użycie Flash Multi do uruchomienia aplikacji, która zaktualizuje bootloader
- 2. Używanie Flash Multi do zapisu oprogramowania sprzętowego poprzez adapter USB-na-szeregowy
- 3. Używanie Arduino IDE do kompilacji i flashowania oprogramowania układowego za pomocą adaptera USB-na-szeregowy

Zewnętrzny adapter USB na port szeregowy nie jest wymagany do aktualizacji bootloadera w module Jumper JP4IN-SE lub RadioBoss JP4IN1, ponieważ mają one zintegrowany port USB na szeregowy CP2102 i można je łatwo zaktualizować przez port USB za pomocą Flash Multi.

Flash Multi (BootReloader)

Ten proces dotyczy MULTI-modułów z "natywnym" portem USB. Moduły te pojawiają się w Menedżerze urządzeń jako urządzenia "Klon" lub "MULTI-moduł".

- 1. Zainstaluj Flash Multi Zainstaluj niezbędne sterowniki
- 2. Uruchom Flash Multi Podłącz MULTI-Module przez port USB
- 3. Upewnij się, że wybrano właściwy port COM Kliknij Advanced -> Actions \rightarrow
- 4. Upgrade Module Bootloader Postępuj zgodnie z instrukcjami, aby zakończyć proces

Zwróć szczególną uwagę na instrukcje i odłącz moduł dopiero po zakończeniu procesu i zgaśnięciu diody LED. Konieczne będzie ponowne zainstalowanie oprogramowania MULTI-Module.

Więcej informacji można znaleźć w dokumentacji Flash Multi.

Flash Multi (USB-to-serial)

Ten proces dotyczy MULTI-modułów podłączonych za pomocą zewnętrznego lub wewnętrznego adaptera USB-na-szeregowy, takiego jak adapter CP2102, CH340G lub FTDI. Dotyczy to wszystkich modułów, które używają sterownika SiLabs CP2102, takich jak moduły JP4IN1.

- 1.Zainstaluj Flash Multi
- 2. Zainstaluj niezbędne sterowniki
- 3.Uruchom Flash Multi
- 4.Podłącz MULTI-Module przez adapter USB-to-serial
- 5. Wybierz odpowiedni plik oprogramowania układowego
- 6.Upewnij się, że wybrano właściwy port COM
- 7.Kliknij opcję Zapisz moduł, aby zapisać oprogramowanie układowe i program ładujący do modułu

Wiele modułów wymaga przylutowania pinów nagłówka w celu podłączenia zewnętrznego adaptera USB na port szeregowy. Będą również wymagać zworki "BOOT0", aby przejść w tryb migania. Więcej informacji można znaleźć na stronach Github z wieloma modułami.

Arduino IDE

Aby zaktualizować bootloader poprzez Arduino IDE, moduł musi być podłączony poprzez adapter USB-na-szeregowy. Instalacja i konfiguracja Arduino IDE wykracza poza zakres tej dokumentacji. Więcej informacji na temat tego podejścia można znaleźć na wielomodułowych stronach Github.