A teraz o ściernicach, szlifierkach, i ostrzeniu.
Zazwyczaj ściernice oznaczone są według podobnego schematu, przy czym różnią się one nieco w zależności od firmy
gdzie
- Typ ściernicy oznacza jej znormalizowany kształt, jest ich duża różnorodność, ale my do ostrzenia za pomocą szlifierki stołowej zasadniczo używać będziemy Typu 1, oraz docelowo w/g potrzeb Typu 6, 11, 12.. (w/g katalogu Andre http://www.andre.com.pl/katalog-produktow/narzdzia-cierne-ze-spoiwem-ceramicznym )
Ściernice te mają różne gatunki nasypu, z których wyróżniamy 3 grupy podstawowych materiałów ściernych używanych do ostrzenia noży tokarskich i innych narzędzi:
- a) - Elektrokorundy (korundy syntetyczne) - αAl2O3 Elektrokorund w różnych odmianach jest najczęściej stosowanym ścierniwem. Wytapiany jest w piecach elektrycznych w temp. powyżej 2000° C z boksytu, względnie tlenku glinu.
- 95A - Elektrokorund zwykły (brązowy) Otrzymywany jest z boksytu. Zawiera 95% Al2O3, ~ 3% tlenku tytanu (TiO2) oraz ~1-2% innych domieszek. Jest najbardziej wytrzymałym elektrokorundem charakteryzującym się wysoką ciągliwością. Stosowany do przecinania i zgrubnego szlifowania niskostopowych stali, stali nierdzewnych, żeliwa, szczególnie przy dużych naddatkach zbieranego materiału.
- 97A - Elektrokorund półszlachetny (szary) Otrzymywany jest z kalcynowanego boksytu oraz dodatku w postaci tlenku glinu. Zawiera 97% Al2O3. Charakteryzuje się średnią twardością i wytrzymałością. Stosowany jest do szlifowania precyzyjnego i do szlifowania narzędzi.
- 99A - Elektrokorund szlachetny (biały) Otrzymywany jest z czystego tlenku glinu. Jest najczystszym elektrokorundem zawierającym powyżej 99% Al2O3. Charakteryzuje się dużą twardością i kruchością. Stosowany do szlifowania precyzyjnego, np.: szlifowanie płaszczyzn, szlifowanie cylindryczne, ostrzenie narzędzi skrawających.
- CrA - Elektrokorund chromowy (różowy) Otrzymywany jest z tlenku glinu z dodatkiem tlenku chromu w ilości do kilku procent. Charakteryzuje się dużą twardością i wytrzymałością, większą od elektrokorundu szlachetnego. Stosowany do precyzyjnego szlifowania stali wysokostopowych, do ostrzenia narzędzi skrawających.
- M - Monokorund (szary) Otrzymywany z boksytu metodą redukcyjną. Zawiera ponad 99% Al2O3. Charakteryzuje się wysoką mikrotwardością i wytrzymałością mechaniczną. Posiada wyjątkową zdolność do samoostrzenia. Stosowany do szlifowania wysokostopowych stali szybkotnących i do ostrzenia narzędzi. Szczególnie nadaje się do szlifowania profili złożonych.
- ZrA - Elektrokorund cyrkonowy Otrzymywany jest z tlenku glinu lub boksytu z dodatkiem tlenku cyrkonu. Charakteryzuje się najwyższą wśród elektrokorundów ciągliwością i wytrzymałością mechaniczną. Stosowany do wysokowydajnego szlifowania żeliwa, do szlifowania półfabrykatów stalowych z dużymi naciskami.
- b - Węgliki krzemu (nazywane też karborundem) - SiC Otrzymywany w piecach oporowych w procesie syntezy wysokiej czystości piasku kwarcowego oraz koksu naftowego. Drugi, po diamencie pod względem twardości.
- 99C - Węglik krzemu zielony Wysokiej czystości węglik krzemu jest barwy zielonej i zawiera min. 99% SiC. Stosowany do szlifowania węglików spiekanych, ceramiki, kamieni, do ostrzenia narzędzi skrawających z ostrzami z węglików spiekanych.
- 98C- Węglik krzemu czarny Zawiera 98% SiC i więcej domieszek. Stosowany podobnie jak 99C do szlifowania węglików spiekanych, materiałów ceramicznych, betonu, kamienia, do zgrubnego szlifowania odlewów z twardego i kruchego żeliwa białego oraz do przecinania betonu, kamienia, żeliwa białego.
- c) Diamentowe - ©
Zarówno z diamentów naturalnych, jak i bardziej powszechnych i tańszych diamentów syntetycznych.
Najtwardszy ogólniedostępny materiał ścierny. (są jeszcze borazony, ale bardzo drogie)
Przy czym do szlifowania trzonków noży lutowanych najlepiej najdają się 95A, 97A, do noży ze stali szybkotnącej (w tym HSS) nadają się najlepiej 99A, CrA, M, do węglików spiekanych 99C, 98C, diamentowe.
Nas w zasadzie najbardziej interesować będą z uwagi na kompromis cena/przydatność cztery z nich:
95A - korundowa do szlifowania miękkiego trzonka,
99A - korund szlachetny do wyszlifowania i ostrzenia noży ze stali szybkotnącej (HSS) (opcjonalnie)
99C - węglik krzemu do ostrzenia płytki z węglika spiekanego
diamentowa T6, 11 lub lepiej T12 - do dopieszczania ostrza z węglika (opcjonalnie)
Oczywiście zamiast podanych można stosować i pozostałe z danej grupy zastosowań, ale te stanowią niezbędną podstawę do ostrzenia danego rodzaju noża. Można także HSS ostrzyć ściernicami do węglika, ale ze względu na mniej odpowiednią dla HSS twardość ich spoiwa szybciej się będą one zużywały(sypały). ale nie polecam szlifować ściernicą diamentową czy 99C miękkiej stali trzonka, bo szybko się one zalepią i będą wymagać obciągnięcia (diamentowania) aby móc nadal wydajnie szlifować.
Jak wygląda zalepiona ściernica korundowa możecie zobaczyć poniżej
Praktycznie na szlifierkę stołową poza podstawowym układem ściernica 95A z jednej strony a 99C z drugiej, można zamontować nawet 3 ściernice na raz uzyskując super zestaw szlifierski, np ściernica 95A do trzonków z lewej, 99C + diamentowa do spieków z prawej, o ile długość części wałka do ich mocowania na to pozwoli.
Można to zrealizować w ten sposób:
inne
http://www.robohippy.net/featured-article/
Trzeba tylko dorobić lepsze, większe stoliki. W ogóle fabryczne stoliki(podstawki) w typowych marketowych szlifierkach stołowych z punktu widzenia ostrzenia noży tokarskich są bezużyteczne z kilku powodów.
Przede wszystkim są niestabilne, zrobione ze zbyt cienkiej, wygiętej tylko kątowo blaszki,
której zamocowanie (prowadnica) jest bardzo wiotka, przykręcona do równie mało sztywnej osłony ściernicy,
co przy szlifowaniu większej powierzchni np trzonka prowadzi do powstawania drgań (sprężynuje).
Ich mała szerokość także nie stanowi pewnego oparcia dla dużego dość trzonka, ani nie pozwala na swobodne i pewne ustawienie pod dowolnym kątem do czoła ściernicy, nie mówiąc już o przystawieniu go do jej bocznej powierzchni, bo jej nie obejmuje (jak to widać na moim rysunku powyżej).
Konstrukcja tych podstawek nie pozwala także na dokładne ustawienie pochylenia w stosunku do czoła ściernicy (kąt przyłożenia α, czy pomocniczy kąt przyłożenia α')
Sugerowałbym kolegom wykonanie w sumie prostych ale bardzo użytecznych nawet dla doświadczonych szlifierzy, uniwersalnych, nie tylko do ostrzenia noży podstawek z grubszej np ≠5-7mm blachy, aluminium, a nawet sztywnej grubszej sklejki, których różnorakie konstrukcje można zobaczyć poniżej. I wybrać sobie wzór możliwy do wykonania we własnym zakresie.
http://www.cnc.info.pl/topics80/tarcza-do-ostrzenia-widi-vt62985,10.htm
poczynając od najprostszej,
po mniej lub bardziej złożone konstrukcje, choć tez nie jakiś technologiczny kosmos
http://www.cnc.info.pl/topics85/ostrzalka-lub-szlifierka-stolowa-vt49960.htm
https://www.youtube.com/watch?v=Xbggxj2kgyc
https://www.google.pl/search?q=Homemade+Grinder+Tool+Rest&source=lnms&tbm=isch&sa=X&ved=0ahUKEwin99Wjy5jLAhXlJZoKHQ1JAugQ_AUIBygB&biw=1214&bih=750#imgrc=_
Gorąco namawiam kolegów, bo takie proste usprawnienie wielce ułatwi poprawne wykonanie dobrej geometrii noża nawet mało doświadczonym, a na pewno będzie dużo bezpieczniejsze.
A zastosowanie w podstawce prostej poprzecznej prowadnicy (nawet ze złożonych i skręconych śrubami płytek) dla suwaka z ustawianym kątem podpórki dla noża, pozwala na wykonanie precyzyjnych prostoliniowych szlifów pod właściwym pożądanym kątem.
http://www.steves-workshop.co.uk/tools/grindingrest/grindingrest.htm
**************************************************
Naukę ostrzenia dla ułatwienia zaczniemy od wykonania ze stalki noża prostego bocznego, o prostej do wykonania geometrii, bardzo dobrego do aluminium, miedzi, mosiądzu, ale także i miękkiej stali
możemy wzorem noży lutowanych przyjąć kąt przystawienia głównej powierzchni przyłożenia Kr=70°, a kąt pomocniczej płaszczyzny przyłożenia K'r=20°, kąt naroża εr wyniesie wtedy 90° (180°- {70°+20°})
zaczniemy od wykonania głównej płaszczyzny przyłożenia 1 z kątem przystawienia Kr
Właściwy kąt głównej powierzchni przyłożenia (α=10-12°) uzyskujemy przez odpowiednie pochylenie stolik w stosunku do czoła ściernicy, z uwzględnieniem krzywizny obrysu samej ściernicy zależnym od jej średnicy D (przez co wyszlifowana powierzchnia będzie lekko wklęsła ale to nie przeszkadza)
Następnie także czołem ściernicy szlifujemy pomocniczą powierzchnię przyłożenia 2 z kątem K'r ,
kąt pomocniczej powierzchni przyłożenia (α') może pozostać taki sam jak głównej, lub dla wzmocnienia zmniejszony do 8°.
następnie dla wzmocnienia wierzchołka noża załamujemy go robiąc nieduży promień (r) (może też być w formie płaskiej 0,5-1mm fazy)
można to zrobić także ręcznie na osełce
Ostatnią operacją ostrzenia 3, jednocześnie dość trudną a bardzo ważną, będzie zaszlifowanie powierzchni natarcia z odpowiednim kątem (γ), z zachowaniem zarazem właściwego kąta pochylenia głównej krawędzi skrawającej (λs).
Jako że do tej operacji kładziemy nóż nie na podstawie, a na prawym boku, właściwy kąt natarcia γ=12°-18° zapewni nam odpowiednie pochylenie stolika (podobnie jak wcześniej do uzyskania odp. kata przyłożenia), a właściwy (dodatni) kąt pochylenia głównej krawędzi skrawającej λs do 30° dla aluminium, i 8°do15° dla stali, zapewni skośne ustawienie na stoliku osi trzonka noża do czoła tarczy ściernicy.
Przy pewnym doświadczeniu można to wykonać także "pod palec", ale ja pokazuję ten film by mieli koledzy lepszy pogląd na zagadnienie (są tam też inne filmy o ostrzeniu)
https://www.youtube.com/watch?v=hrDr4rYLiAk
https://www.youtube.com/watch?v=dRyqIm5JR5s
https://www.youtube.com/watch?v=HTQ46NMMc88
https://www.youtube.com/watch?v=HTQ46NMMc88
Przykładowe kąty poszczególnych powierzchni zalecane dla wybranych rodzajów skrawanego metalu podano w tabelce poniżej. Ale nie są one bezwzględnie krytyczne i wystarczy wykonując ostrzenie zachować przybliżone wartości
Można także zamiast klasycznego szlifowania całej powierzchni natarcia pod kątem γ wyszlifować krawędzią ściernicy, koniecznie wzdłuż głównej krawędzi skrawającej (z zerowym lub ujemnym kątem pochylenia λs) rowek/kanałek wiórowy, opierając na stoliku nóż na wierzchołku ostrza, i dosuwając powierzchnię natarcia do krawędzi ściernicy, z główną krawędzią skrawającą ustawioną pionowo (prostopadle do powierzchni stolika).
Osobiście uważam to za opcję lepszą, bo sam rowek wiórowy zapewnia nam już dodatni kąt powierzchni natarcia, a jednocześnie pełni funkcję łamacza/zwijacza wióra.
Rowek wiórowy może mieć zarys wycinka okręgu - okrągły, z większym ale mniej wytrzymałym mechanicznie dodatnim kątem γ powierzchni natarcia, zależnym od wartości promienia r krawędzi ściernicy, nadającym się do skrawania miękkich materiałów i metali jak aluminium, miedź, brązy, wyżarzany mosiądz, tworzywa sztuczne, twarda guma, itp..
lub kroplowy (jak odwrócony profil płaskowypukły), z mniejszym katem powierzchni natarcia γ, ale za to dużo wytrzymalszy, bardziej nadający się do skrawania stali, gdzie wartość kąta natarcia γ jest różnicą kąta 90° a kąta przystawienia trzonka noża do czoła ściernicy x
γ = 90°- x°
różne przykłady rowków wiórowych
Kto chce sobie nieco pogłębić temat może poczytać w linkach
https://books.google.pl/books?id=WCYDAAAAMBAJ&pg=PA150&lpg=PA150&dq=how+to+grind+a+lathe+bit+chip+breaker&source=bl&ots=uOUoU0ThEz&sig=-g04FiB_OcsnNpIVynzimdmHV6k&hl=en&sa=X&ei=7xAIUe2uDsOO2wWuyYGABQ#v=onepage&q=how%20to%20grind%20a%20lathe%20bit%20chip%20breaker&f=false
http://lotek.info/proj/dead_center/
Jak koledzy widzą naostrzenie noża do wzdłużnego toczenia nie jest wcale czarną magią, wymaga tylko troszkę wiedzy, podstawowego sprzętu, i nieco manualnych zdolności na których, jak śmiem sądzić, modelarzom nie zbywa. Analogiczne zasady stosujemy do innych rodzajów noży poza przecinakami i wytaczakami, o czym bedzie dalej.
Od biedy rowek wiórowy można wykonać i w taki sposób, ale wymaga to pewnej ręki, i tego nie polecałbym.
http://www.practicalmachinist.com/vb/south-bend-lathes/easy-hss-chip-breaker-219269/
Kąty przyłożenia i rowki wiórowe w nożach odsadzonych bocznych których będziemy używać do toczenia najczęściej wykonujemy podobnie
A noże VHM z płytkami z węglików spiekanych?
Ogólnie zasady ostrzenia są prawie identyczne, należy tylko odpowiednie części noża szlifować na właściwych ściernicach, i nie stosować za dużych katów natarcia z racji większej kruchości spieku.
Główną powierzchnię przyłożenia w nożach z lutowana płytką szlifujemy w dwóch fazach:
- najpierw pod większym kątem αn2= 10°-12° sam miękki trzonek na ściernicy 95A, bez szlifowania płytki VHM,
- potem pod mniejszym kątem αn1 = 5°-7° powierzchnię przyłożenia płytki ze spieku VHM na ściernicy 99C
Jeśli mamy do dyspozycji również ściernicę diamentową to kąt αn1 płytki szlifujemy na 2 razy:
- w pierwszym zabiegu na ściernicy 99C pod katem αn1= 7°-10° (kąt ten stosuje się również do mocno szczerbatych płytek),
- w drugim zabiegu na ściernicy diamentowej pod katem αn1= 5°-7° już na gotowo.
Orientacyjne wymiary rowka(kanałka) wiórowego w zależności od głębokości skrawania (ap) i prędkości posuwu (fn) mamy w tabelce poniżej.
Oczywiście do amatorskich zastosowań na słabonapędowej obrabiarce wystarczy przyjąć średnią lub największą wartość z pierwszego rzędu (dla ap =1mm), i lekko dodatnią lub nawet zerową wartość kąta natarcia ( widać to na zdj. poniżej), co wzmocni krawędź skrawającą.
Którą po naostrzeniu należy dodatkowo lekko stępić diamentową (lub z węglika krzemu) osełką by nie dopuścić do wykruszania się zbyt cienkiej krawędzi ostrza.
Uniwersalnym, najczęściej w robotach tokarskich używanym, będzie profil odsadzonego noża bocznego NNBe
z dobrze skrawającym stal kroplowym rowkiem wiórowym wzdłuż głównej krawędzi skrawającej, o niedużym kącie natarcia, ale za to zapewniającym ostrzu dużą wytrzymałość, jaki widać na zdjęciu poniżej.
Wykonanie podobnej geometrii noża NNBe naprawdę nie jest takie trudne, nawet dla początkującego tokarza, jeśli się zna kolejne kroki (j/w), a z każdym przeostrzeniem będzie coraz doskonalsze.
Troszkę inaczej wygląda proces ostrzenia dwu innych rodzajów noży; przecinaków i wytaczaków, a to ze wzgledu na ich szczególne warunki pracy i odmienną ogólną geometrię, chociaż główne zasady dotyczące samych ostrzy skrawających są identyczne.
Zacznijmy od przecinaków.
Przecinaki mają dość niekorzystną budowę pod względem wytrzymałościowym, ich część robocza jest bardzo wydłużona i wąska, przez co podatna na wyginanie na boki pod wpływem niezrównoważonych oporów skrawania. A przy ograniczonej (ze względu na wymiar h do osi) wysokości mają niewielki w porównaniu z trzonkiem dużo mniej wytrzymały na przeciążenia w porównaniu do innych noży przekrój poprzeczny.
W dodatku pracuje w wąskiej zazwyczaj głębokiej szczelinie przecinanego materiału gdzie spływ i usuwanie powstającego wióra jest utrudnione.
Wszystko to razem wzięte sprawia że przecinaki są dość delikatnymi, narażonymi na uszkodzenia narzędziami.
W dodatku na proces cięcia mają wpływ także inne czynniki, takie jak sztywność i wielkość luzów maszyny, zwłaszcza luzy łożyskowania wrzeciona, jaskółek sań, wysunięcie, średnica, rodzaj i twardość przecinanego materiału, same parametry cięcia, a nawet masa maszyny(o czym wspomnimy dalej).
jak sprawdzić luzy jaskółek przedstawia zdjęcie poniżej (analogicznie podważając dźwignią imak - tu akurat tylny)
Jeśli mamy możliwość zaciskania śrubą lub dźwignią docisku suportu do łoża w celu jego unieruchomienia, to warto to przy przecinaniu uczynić - im sztywniejsza maszyna tym lepiej dla procesu przecinania. Podobnie z zaciskiem na listwie jaskółki sanek narzędziowych (przy poprzecznych kasujemy tylko nadmierny luz).
http://www.model-engineer.co.uk/sites/7/images/member_albums/86530/571926.jpg
Z tego powodu proces przecinania jest swoistym testem sztywności i poprawności regulacji luzów nowej, a zużycia i ogólnej kondycji (zwłaszcza łożyskowania wrzeciona) używanych tokarek.
Im szerszym przecinakiem możemy bezproblemowo, bez wzbudzania szkodliwych drgań, przecinać stal - tym ocena kondycji wyższa.
Niestety nasze hobbystyczne obrabiarki nie mogą pochwalić się najlepszymi rezultatami w tym zakresie.
Dlatego wykonaniu prawidłowej geometrii przecinaka podczas szlifowania, która zapewnia nam jak najmniejsze opory skrawania powinniśmy poświecić nieco więcej uwagi i staranności. A potem właściwemu przebiegowi samego procesu cięcia.
Poniżej prezentuję film jak właściwie dobrane parametry i narzędzie w zasadzie bezproblemowo(nie licząc samej końcówki) pozwalają na przecięcie dość dużej średnicy wałka z wywierconym współśrodkowym otworem (co też ma znaczenie, o którym powiemy dalej).
Jak widać pomimo dużej średnicy do przecięcia bardzo wydłużoną częścią roboczą noża (tu akurat listwy tnącej, ale to bez znaczenia) proces cięcia idzie sprawnie i bez komplikacji, o czym może świadczyć ładnie spływający wstęgowy wiór, brak odgłosów wzbudzania się niepożądanych drgań, oraz prosta i gładka płaszczyzna po cięciu.
Materiał wystawiony możliwie krótko, obroty nie za duże, dobrze dostosowane do dużej średnicy w myśl dobrej dla ręcznego cięcia zasady: im większa średnica - tym mniejsze obroty, ręczny posuw narzędzia odpowiedni,nie za szybki, ale i nie wolny(o tym dalej), oraz zastosowane chłodzenie które prócz obniżania temperatury również smaruje powierzchnię natarcia noża, polepszając spływ po niej studzonego wióra, i równocześnie wydatnie zmniejszając tendencję do powstawania niepożądanego narostu na krawędzi skrawającej.
Wiec skoro tak dobrze szło, to czemu w końcowej fazie docinania nóż nie wytrzymał ?
Na to niekorzystne zjawisko złożyło się kilka przyczyn. Aby je właściwie zanalizować musimy cofnąć się nieco do teorii.
Otóż jak już poznaliśmy ze wzoru, prędkość skrawania vc zależy od obrotów n, i średnicy Dm skrawanego materiału. Tu obroty n są stałe, więc przekształcając wzór prędkość skrawania vc zależy od średnicy skrawania Dm .
Ale średnica ΔDm zmniejsza się wraz wcinaniem się noża w materiał, co analogicznie skutkuje zmniejszającą się w sposób proporcjonalny prędkością skrawania vc2. Malejąca prędkość skrawania pogarsza spływ wióra z powierzchni natarcia, bo prędkość nabiegania materiału na nóż maleje, a utrzymany stały posuw fn przy malejącej średnicy skutkuje proporcjonalnym wzrostem pozornej głębokości skrawana ap, co w sumie prowadzi do narastania siły oporów skrawania Fc działających na nóż, W dodatku spiętrzanie się wióra na coraz większej powierzchni ostrza zmienia kierunek jej wypadkowego wektora ΔFc na bardziej pionowy niż na początku(Fc), przez co działa ona na mniejszy przekrój L2 części roboczej, wynikający z pochylenia płaszczyzny przyłożenia o kąt α.
Do tego dochodzi jeszcze zjawisko występujące w samej końcówce procesu docinania materiału z współśrodkowym otworem, polegające na plastycznym odkształcaniu się pierścienia coraz cieńszej, pozostałej do przecięcia warstwy materiału. W praktyce naciskające na plastycznie niestabilną warstwę ostrze zamiast skrawać bardziej trze o nią, wybrzuszając ją w światło otworu, aż do momentu przekroczenia granicy jej wytrzymałości na rozciąganie. Następuje wtedy nagłe przebicie tej warstwy, a uwolniona gwałtownie siła nacisku powoduje nagły skok ostrza Δfn w światło otworu, zazwyczaj o wartość luzów śruby sanek poprzecznych suportu, łożysk wrzeciona, i ew. ugięcia samego noża i materiału pod nożem (w zależności od ich wiotkości). Może to być czasem milimetr i więcej, zależy od powyższych.
A jako, że przecinany materiał obraca się nadal, to pozostała część niedociętego jeszcze pierścienia materiału nabiegając na powierzchnię natarcia łamie się i spiętrza, powodując duży skokowy wzrost siły oporu skrawania ΔFc.
Jeśli wzrost tej siły będzie dostatecznie duży, to może przekroczyć wytrzymałość na ścinanie przekroju ostrza w punkcie jej przyłożenia, co skutkuje pęknięciem i wyłamaniem "czubka" ostrza.
Lub dokładając do tego wzmacniający moment długości dźwigni między miejscem przyłożenia siły Fc(na ostrzu) a punktem zamocowania (podparcia) noża w imaku, może przekroczyć wytrzymałość na zginanie nawet pełnego przekroju części roboczej (który w tym miejscu jest mniejszy niż przy wierzchołku z racji geometrii ostrza), wyłamując ją w całości. Jak to było w przypadku tej listwy tnącej na filmie.
Podobnie ma się sprawa przy przecinaniu pełnego materiału, tam jednak sprawcą destrukcji jest najczęściej urywanie się odcinanego detalu pod wpływem własnego ciężaru i siły odśrodkowej, przed całkowitym docięciem do osi, przez co pozostaje niedocięty czop, często przy okazji wyłamujący część ostrza.
Tu również może nastąpić niepożądany "skok" noża do przodu jeszcze pogarszającysytuację, jednak w porównaniu do odcinania detalu (pierścienia) z centralnym otworem jak wyżej, zagrożenie jest dużo mniejsze.
"Skok" w przypadku jest tym bardziej prawdopodobny, im większa jest odchyłka ustawienia wierzchołka ostrza pod osia toczenia, gdyż materiał czopu wykorzystując brak dostatecznej sztywności maszyny oraz pewną sprężystość ostrza noża i materiału, uwalniając nagle naprężenia nabiega na powierzchnię natarcia ostrza, prowadząc w skrajnych przypadkach do jego wyłamania.
Dlatego starajmy się zawsze ustawiać wierzchołek ostrza dokładnie w osi toczenia.
Jak można takim niepożądanym zjawiskom zapobiec, by docinając nie uszkodzić przecinaka?
Według teorii - nie dopuszczając do zmniejszania się szybkości skrawania vc, poprzez zwiększanie aż do maksymalnych, obrotów n. Ale w mechanicznych obrabiarkach, z niesterowalnym w czasie rzeczywistym napędem jest to niemożliwe do zrealizowania, poza tym mogło by być niebezpieczne z powodu gabarytów, kształtu, czy niecentryczności zamocowanych mas (wibracje).
Ewentualnie można zastosować mniejsze obroty na początku przecinania centrycznego detalu o dużej średnicy, a potem gdy ta znacznie się zmniejszy, do docinania zwiększyć je. Do bezpiecznego jednak poziomu. Nie zawsze jest to jednak możliwe.
Cóż innego więc można zrobić?
Można stopniowo (z wyczuciem) zmniejszać posuw narzędzia, a w końcowej już fazie docinania, kiedy czujemy że materiał zaczyna plastycznie ustępować i wybrzuszać się w światło otworu pod naciskiem ostrza, robić małe "przystanki" w posuwie, pozwalając tym samym na "wybieganie się" wióra, i stopniowe z każdym obrotem detalu automatyczne redukowanie się nacisku ostrza na pozostałą do przecięcia część("pierścionek").
Postępowanie takie, zmniejszające presję ostrza na materiał i redukując powstałe naprężenia, najczęściej zapobiega gwałtownemu jego "skokowi" w światło otworu podczas przebicia ścianki pierścienia, pozwalając na bezpieczne oddzielenie odciętej części od reszty.
Tego właśnie zmniejszenia posuwu (i nacisku) przy docinaniu, zapobiegającego owemu "skokowi" nie zrobił operator na powyższym filmie, z widocznym dla wszystkich skutkiem.
W redukcji zagrożenia "skokiem" pomaga także lekko skośna w stosunku do osi toczenia materiału głowna krawędź skrawająca, będąca wynikiem skośnego zaszlifowania głównej płaszczyzny przyłożenia (czoła przecinaka). czyli kąt przystawienia Kr różny od 90°.
Zazwyczaj skos wykonywany jest w ten sposób, że wierzchołek ostrza jest od strony odcinanego detalu, by odcięta płaszczyzna nie miała niedociętych pozostałości czopa czy "pierścionka".
http://www.model-engineer.co.uk/sites/7/images/member_albums/69121/458626.jpg
Może też być odwrotny.
Taka skośna linia głównej krawędzi skrawającej powoduje, że docinany "pierścionek" lub czop ma niejednakowej grubości stożkowaty kształt, o różnej w przekroju wytrzymałości na rozciąganie, zapobiegający jego wybrzuszaniu przez ostrze do światła otworu. Wówczas zamiast całą szerokością, przez "pierścionek" przebija się najpierw sam wierzchołek ostrza, odcinając tym samym detal od całości, a stopniowo wraz z posuwem noża ukośnie skrawana reszta stożka zapobiega tak niepożądanemu "skokowi" przecinaka.
Wartość kąta przystawienia ostrza Kr nie może być jednak za bardzo różna od 90°, bo podczas cięcia będzie spychać ostrze w kierunku wierzchołka powodując cięcie materiału po łuku,
https://john5293.files.wordpress.com/2014/03/2019-parting.jpg?w=300&h=225.jpg
co może się skończyć pęknięciem twardego ale kruchego ostrza.
Główna krawędź skrawająca przecinaka może też mieć inny, bezpieczniejszy dla naroży kształt (a, b ), oraz rzadziej spotykany, odcinający "pierścionek" czy czop jednocześnie od obu ścianek materiału - kształt c (niektóre listwy tnące z półokrągłą powierzchnią natarcia),
a. półokrągły,
b. graniasty(boczne fazy)
c. wklęsły
cdn..